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A HYPERSONIC NORMAL SHOCK WAVE

By Kenneth K. Yoshikawa and Dean R° Chapman

SUMMARY

A study is made of the emission_ absorption 3 and decay of radiant

energy by high-temperature air behind a one-dimensional shock wave in

hypersonic flow. The analysis is developed for the case of gray radiation

in local thermodynamic equilibrium. A relatively simple solution of the

integro-differential equations has been obtained for the magnitude of

the radiant fluxes in the upstream and downstream directions. In this

solution_ the temperature distribution is not computed initially_ but is

computed subsequent to the determination of the optical thickness.

Numerical results are presented for the distribution of upstream and

downstream radiation heat flux for pressures between i and 103 atmospheres_

and for temperatures between i0_000 ° K and 15_000 ° K. The flight condi-

tions are outlined under which the decay and absorption of radiant energy

become important in the gas cap of _ entry vehicle.

INTRODUCTION

The study of heat transfer by radiation in a gaseous media is of

considerable interest in various scientific problems_ and of particular

concern to the heat protection of space vehicles during atmosphere entry

at velocities above the escape velocity for the earth (refs. 1-6). At

these high velocities_ and at the modestly high densities encountered

behind strong shock waves_ the absorption as well as emission of radiant

energy by the shock layer can be a significant part of the energy crossing

the shock wave. For such conditions the influence of absorption must be

included in an analysis of this problem (refs. 7, 8). A general formula-

tion of the equations for heat transfer by radiation and absorption has

been presented by Goulard (ref. 9). The fundamentals of the basic transfer

theory behind their formulation may be found in various books on astro-

physics (e.g._ refs. i0, ii). A number of papers have been published in

which calculations of the radiative heat transfer from the hot-gas cap to

a reentry vehicle are made under the simplifying assumptions of constant

temperature and negligible effects of radiation absorption (refs. i, 2_ 3).

Recently_ a very general form of the basic radiation equations has been

presented by Viskanta (ref. 7).



2

In the present report_ the radiation heat fiux behind strong normal
shock waves wherein radiation absorption and decay of radiation emission
are important has been calculated under the following assumptions:

i. Gray radiation with local thermodynamic equilibrium of the
radiation and the gas properties behind the shock wave.

2. Negligible absorption upstream of the shock wave of the radiation
from the region downstreamof the shock wave.

3. Transparent shock front (zero reflection of radiation passing
upstream through shock).

4. Black body wall at a temperatttre very small comparedto the gas
temperature.

5- Negligible heat transfer by thermal conduction and convection
comparedto radiation.

6. Radiant heat flux at the wall in a real flow with shock detach-
ment distance_ L_ is the sameas that in an idealized one-dimensional
hypersonic flow wherein all downstreamradiation is absorbed at a
distance L do_¢nstreamof the shock wave.

NOTATION

A_ B_ Bo_ \
BI_ C_ D_ f /

a_ b_ c

an

Bw

c

Cp

d

En(t), Ei(t)

The notation adopted is that of Goulard (ref. 9).

constants in equation (A5)

constants in equation (A2)

coefficient of expansion in equation (A_I)

P! cWs f nction(eq.(2c))

velocity of light

specific heat at constant pressure

constant in equation (21)

exponential integral (eq. (2a))

radiation intensity_ 4_T 4

F, Fo, FI, F2,] dimensionless flux functions (eqs. (13), (12)_ (15a),

Ft, J (13c),(13a),(13b))



F* _ F.

G

h

k

L

Lc

Labs

Ldec

P

q

qs

%

r

s_ t_ x I

T

Te

T2

T

V

x

f

C

function in equations (A27 a) and (A27d)

mean slope of F

modification factor (eq. (A23))

Planck's constant or enthalpy

Boltzmann's constant or heat conduction coefficient

shock standoff distance

combined characteristic length

characteristic absorption length in equation (24b)

characteristic decay length in equation (24a)

constants (eq. (A4))

pressure

net radiant heat flux (eq. (5))

radiative heat flux in upstream direction at shock location

(eq. (6a))

radiative heat flux in downstream direction at wall (eq. (6b))

reflectivity

integration variable

ab solute temperature

absolute temperature of air at wall

absolute temperature behind normal shock wave

ratio of T to T2

velocity behind normal shock

flight velocity

horizontal coordinate

parameter (eq. (B2))

emissivity or perturbation function (eq. (17))
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c T

d

P

C

@

r

s

t

V

2

+

co

q"

T_¢

factors in equation (A25e)

constants (eq. (21))

heat-transfer coefficient,

frequency

Stefan-Boltzmann constant

density

absorption coefficient

q

Planck mean absorption coefficient_

optical thickness (eq. (2b))

optical thickness for x = L

oo

_o B v dv

Sub script s

conduction

gas at the wall

radiation

shock wave

total

wall

frequency

behind shock

upstream direction

downstream direction

free stream
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Superscripts

first derivative with respect to optical thickness

second derivative with respect to optical thickness

ANALYSIS

In this section the basic integral equations for the radiative heat

fluxes traveling in the upstream and downstream directions are first pre-

sented for the case of a nongray gas. These equations are then special-

ized for the particular case of gray radiation and for the particular

boundary conditions of the present problem. By combining these equations

with the equations describing the fluid dynamics of the gas flow behind

shock waves_ the final equations to be solved are obtained. The

mathematical techniques employed for their solution are then described.

Equations for 0he-Dimensional Nongray Radiative Heat Flux

The basic equations for monochromatic radiation of frequency w

between two parallel boundaries are as follows (e.g._ refs. 9 and ii):

For the radiative flux in the downstream direction toward the wall

q_(Tv) = 2_ Bw(t)E2(T w - t)dt + 2q_(O)Es(T v) (i)

For the radiative fl_x in the upstream direction toward the shock wave

F TV_q+(Tw) = 2_ B_(t) Ea(t - T_)dt + aq+(Tww)Es(T_w - T_) (2)

_T V

where the exponential functions are defined by the integral

Em(t ) = sn-2e-t/Sds; Ei(t ) = -El(-t) (2a)

and the optical path length T_ is defined through the equation

T v = _ dx' or dT_ = _ dx (2b)



and the Planck function Bv is defined through the equation

c2 ehw/kT - i

In equations (i) and (2) the integrals represent fluxes from the gas
layer itself and the additional terms are fluxes from the boundaries.
The radiative flux is integrated over all frequencies as follows:

For the downstreamdirection

O0

q_(x) = Jo q_(',_)d_ (3)

For the upstream direction

g_ O0

q+(_) = ,-/o q+(.r_)d_ (4)

The net radiation flux at any given x position is defined as

q(x) = q+(x) - q (x) (5)

Basic Equations for Radiative Flux

Specialized to Present Problem

Under the assumption made for the present problem of gray radiation,

the absorption coefficient _v is independent of frequency v and so

is the optical thickness Tv. Also_ as is sketched in figure i, the

shock front is assumed to be transparent (_s = rs = O) and the wall is

assumed to be an opaque black surface (_w = i, rw = O) with the wall

temperature Tw << T2. For these conditions equations (i), (2), and (5)
reduce to

SoTq(T) = 2dT_Em(t - T) dt - 2dT_E2(T - t) dt (6)

which at the shock wave becomes

qs _ q+(O) = So Tw 2dT4E2(t)dt
(6a)
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and at the wall becomes

qw -= -q_(mw) = - 2c_T4E2(Tw - t)dt (6b)

where the temperature T is a function of the independent variable T_

and Tw is the optical thickness at the wall.

Since dE2(T) = -El(T)d T, differentiation of equation (6) yields

dq(T) : _4_T 4 + 2sT_EmIt - Tld dT (7)

and the thermal conditions at the shock wave and wall are_ respectively_

U_OTwqs' - q'(O) = -4aT2 4 + 2_T4El(t)d t (7a)

_0 Tw 4qw' - q' (T_) = -4(_Te _ + 2aT Em(Tw - t)dt (7b)

where the prime denotes the derivative with respect to optical thickness.

Combination of Equations for Gas Flow and Radiative Flux

In a one-dimensional steady hypersonic flow such as is being

considered_ the three basic flow equations are:

continuity

momentum

energy

d(pV)= 0 (8)

+ pV dV = 0 (9)

pV d +_ V - dq r - dq c = 0
(lo)
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or

<h m 2) bTDV + _ V - qr - k _x = const. (lOa)

For a shock wave moving at hypersonic velocity relative to the undisturbed

air_ we have the following approximations:

i
(a) h_ >> _ V22

(b) -I_ ! dV<<A
P _x v_ ax L

An important consequence of approximation (b) is that the flow behind the

hypersonic normal shock wave is essentially a constant pressure flow.

Furthermore, at the very high velocity considered herein, the transport

of energy by thermal conduction is disregarded compared to the transport

by radiation_ so that we have the additional approximation

(°) qr >> k b_!
bx

The justification for this assumption wiil be discussed later in an

appendix.

If the above approximations are applied and equation (7) is

substituted for dqr, equation (i0) can be written as

-p_V_ dh -dqr <4_T_ fo mw t_
= = - 2_T4EiIt - told dT (ll)

The left side of this equation involves the aerothermodynamic variables

which may be represented by the dimensionless function Fo' defined as

Fo'(Pa, ha; h) =
PooVoo dh

2_T2 4 dT
(lla)

Similarly_ the right side_ which involves the radiation-absorption

variables, is represented by the dimensionless function F'

fo Tw
F'(Tw, m) _ i dq = 2_4 T4EIlT- tldt (ilb)

2_Ta _ dm

where _ is the ratio T/T2.



9

At the upstream boundary of the radiation region (adjacent to the

shock wave) this last equation becomes

_o Tw
Fs' = F'(%, O) = 2- &_(t)dt (ilc)

and at the downstream boundary (adjacent to the wall) it becomes

Jo TwFw' _ F'(TW, TW) = 2Te _ - _4EI(T w - t)dt (lid)

The integral forms of these equations are

Fo(P2 , h2; h) =
pv

(_= - _)
2c_T2

(12)

and

F(_w ' _) _- c,(O) - _(_)
2_Ta 4

}4E2(t)dt + _o T _4E2(T - t)dt - _ Tw

From equations (6a) and (6b) the upstream value of the flux is

J_o Tw
F s : Y_E=(t)dt (:-3a)

and the downstream value is

Jo Tw
Fw = ¥4S=(% - t)dt (13b)

The combined or total radiative flux for a given shock standoff distance

is

Ft = _s +Fw (13c)

In solving the basic equation (ii), it is convenient to recast it

into a dimensionless form. By dividing both sides of equation (ii) by

the local temperature T_ there results
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-pV dh

2_T 4 (2 _o m_ T4(t) El lt- T ldt) dTT 4
(14)

which; with the definitions;

_h h2 dhr_(P2, h2; h) _ p V 2_T_ (15a)

and

(!_b)

becomes

FI(P2, h2; h) = F2('rw, T) (15)

The derivative of the F2 function at the shock wave (m = 0); and at

the wall (T = TW) ; follow from equation (14).

_o _F2s' = F2'(Tw; 0) = 2 - _(t)Em(t)dt (16a)

i fo TwFaw' --- F2'(Tw; Tw) : 2 - _e _(t)EI(Tw - t)dt
(16b)

These derivatives represent dimensionless forms of the radiant heat flux

passing upstream at the shock; and downstream at the wall; respectively.

OUTLINE OF METHOD OF SOLUTION

Inasmuch as the basic equation (ii) is a nonlinear integro-

differential equation; a method of solution incorporating successive

iterations of approximate solutions is employed. The full development

of the analytical method is rather detailed; and is presented in

appendix A. In the present section; only the salient or novel features

of the method are outlined; and the first approximation; the second

approximation; and the conversion from optical to physical coordinates;

are briefly described.
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First Approximation in Terms of Optical Thickness

A perturbation function c(Tw_ 7) is introduced for the temperature
in terms of the following expression:

Or

T 4

T !
~ i + 4 _ \t - 7jI _ + , • •

T

The function c(Tw, T) is then defined as

iIoTw fo 7wT-_ Y4(t)Ellt - Tldt = [i + _(Tw, 7)] Ellt - Tldt (17)

For the case of either small variation of temperature, or of weak

absorption_

c(7w, 7) ~ 0

and the integrals appearing in equation (15b) can be evaluated in terms

of exponential integral functions

1
F_(T_, _) =E- F,_(=w)-_,_(_) + _,_(Tw-_) (18)

The exponential integral Es(T) is further approximated by the exponential

function e-2T/a which, at T = O, has the same value as Es(O) , and the

same derivative as Es'(O); the resulting expression is then multiplied

by the normalizing factor [i - 2E3(T w) ]/2(i - e-aTw) in order for the

over-all approximation for Fa to reduce to the correct value at 7 = 7w.

Thus, as a first approximation_ C(Tw_ T) = O_ and the function F2 is

_(T_, _) = i - 2E_(Tw)

2(1 - e-2Tw)
[l - e-2Tw - e -27 + e -2(Tw-T)] (19)

This approximation provides a solution for the integrals on the right

side of equation (15).

A solution is also required for Fl, the integral term on the left

side of equation (15). It is to be noted that the various terms in

equations (12) and (15a) are a function only of the thermodynamic
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properties as given in figure 2 and are independent of the optical
thickness m. Hence_the integrals of such terms can be readily evaluated
from the basic flo_ charts of various references (e.g._ refs. 12_ 13_ 14_
and 15). Functions Fo and Fz have been evaluated in this mannerand
the results are shownas figures 3 and 4. To determine the do_nstream
and upstream radiation fluxes Fw and Fs the temperature as a function
of Fl is expandedin polynomial series as

_4 = i 8dTm3 F l + a£Fz £ + . . . anFl n (20)

PV_Cp2

where an are constants to be determined. Equations for Fw and Fs

can be obtained from equations (13 a) and (13b)_ respectively, after

equating FI to F2.

Second Approximation for the Solution in

Terms of the Optical Thickness

For the second approximation_ a modified form of the

is employed

F2(T_, T) = d[1 - e-42T_ - e -4S + e-42(Tw-T) ]

from _hich the slopes at both ends are obtained as

F2 function

(21)

r2s' _- d(4j_ + 42e -_12"r_'_) (£Za)

raw' = d(4ze-4Sw + 42) (2lb)

The values of the constants d_ _l_ and h2 are determined from an

iteration of the first approximation. It has been found expedient_

because of the singularity in F"(Tw, T) at T = TW_ to introduce a mean

slope _w' instea_ of F2_' in order to compensate for small but

sudden changes of temperature near the _all.

Conversion From Optical Thickness to Physical Dimensions

With the solution established in terms of optical thickness it is

a relatively simple matter to convert to the corresponding physical

coordinates. For strictly gray radiation the absorption coefficient

is constant_ but for air radiation _ varies; and hence some mean value
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should be used. The Planck mean _ is employed herein. From the

definition of optical thickness for gray gas (eq. (2b)), we have

d_--_ dx

from which it follows that

X _

In applying this equation to a flow with a shock detachment distance L;

the basic assumption (6) of the present paper is employed

L : xw (23)

Thermodynamic properties behind a normal shock are presented in _igures 5

and 6_ and corresponding values for the absorption coefficient _ are

computed from _ata in references 16 and 17 and presented in figure 7.

The variation of temperature over the distance x behind the shock wave

is obtained from equation (19) or (21) and the data of figure 3-

RESULTS AND DISCUSSION

Prior to the presentation of results from solutions of the integro-

differential equation for the radiative heat flux; several auxiliary

charts will be presented. Useful aerothermodynsaric charts for applying

the present results to a given problem of atmosphere entry are presented

in figures 5 and 6; these give the values of temperature; pressure; and

density behind normal shock waves for various flight conditions. The

basic data for the equilibrium radiation intensity per unit volume are

given in figure 8; these data were obtained by combining the results of

references 16 and 17. For purposes of comparison; a summary plot of the

radiative heat transfer to a stagnation point of a hemisphere; as obtained

from the work of reference 3 for the case of no absorption; is presented

in figure 9. (It is noted that a correction factor of i to 0.8 for the

spherical segment of the gas cap as opposed to an infinite slab has been

included in the data of these figures.)

In order to delineate the flight conditions under which absorption

is important it is convenient to introduce the idea of a characteristic

length L c. The relative magnitudes of L c and of the shock standoff

distance L provide a convenient means of marking the boundaries of the

domains _herein the decay and the absorption of radiation are significant.

A characteristic decay length; Ldec; is introduced as
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1 PcoVoo3
= p V h2~ (24a)
4_T24 E%

where Lde c is the length required to lose all energy by radiation of

constant intensity behind a normal shock wave. A characteristic absorption

length, Labs, is defined as

l (24b)
Lab s =

and is the length required to reach the black body radiation limit.

At relatively high densities_ Lab s << Ldec, so that absorption dominates

decay and Lc _ Labs; but at relatively low densities, Lde c << Lab s so

that decay dominates absorption and L c _ Lde c. By fairing between these

two characteristic lengths in intermediate regions, a single characteristic

length Lc has been obtained for the entire flight domain. Curves of

combined characteristic lengths are presented in figure i0. If the shock

detacl_nent distance L is such that

L < Lc (25)

then the nondecay-nonabsorption regime would be applicable and the radia-

tion heat flux would be that of an isothermal gas. At the opposite

extreme of very high pressures, namely, P2 > 10 2 atm, where the absorption

is strong and the characteristic length Lc is such that

i

Lc _< L (26)

the radiation heat flux would be essentially that of black body radiation

at the local temperature (which would vary between the shock and the wall).

Before determining the degree of refinement required to estimate

accurately the radiative flux by the first approximation, the accuracy

of the second approximation is investigated. Temperature distributions

as determined by the second approximation and by equations (12) and (13)

are shown in figure ii. When the second approximation (continuous curved

line) is used as input into these equations, the square points are

obtained as the output. The physical condition presented in figure Ii

is a typical case where radiation absorption, as well as the interdepend-

ence of the radiation term and the entha!py term of the energy equation,

is important. As may be seen from the close agreement of curves and

points in figure ii, the results of the second approximation are very

accurate. Hence, the second approximation, which is an iterated solution

based upon the first approximation, may be considered as nearly exact.

The first approximation is less accurate than the second, but is
adequate for most conditions. Curves for the radiation heat flux

according to the first and second approximations are shown in figure 12.
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The difference between the two approximations is less than 4 percent.

It should be noted that at either higher or lower pressures the radiation

fluxes, as calculated from the two approximations, will approach each

other even more closely_ inasmuch as these conditions correspond to either

smaller temperature variations or to weaker absorption effects behind the

shock. The first approximation_ which is rather simple to evaluate, is

therefore considered to be sufficiently accurate to estimate the radiative

heat transfer.

The principal results of this report are presented in figures 13

and !4. The radiative flux F s at the shock wave and Fw at the wall

as determined from equations (13a) and (13b) according to the first

approximation are plotted as functions of Tw in figure 13. Figure 14

shows a typical comparison of the radiation flux for the case wherein

absorption and decay are neglected with the case wherein both absorption

and decay are considered. The solid straight line represents the flux

with no absorption or decay, corresponding to a constant temperature

behind the shock. As Tw increases_ F s and Fw curve away from this line

as a result of the decay phenomenon; these curves become a plateau as Tw

is increased further as a result of the absorption phenomenon. It is

noted that the flux at the wall, Fw_ for an optically thick layer is

larger than the local black body radiation at the wall. This is due to

the fact that the temperature gradient at the _¢all is negative_ and the

gas temperature ever_¢here in the shock layer exceeds Te. It is also

noted that the departure of the F s curve from the Fw curve is a

manifestation of decay and absorption effects, inasmuch as Fw wouJld

equal F s if there were negligible decay or no absorption. Since both

of these curves bend away from the straight line (representing no decay

or absorption) by a great amount, as well as deviate from each other by

a substantial amount, it follows that the effects of both decay of

radiation and absorption of radiation are important in this case.

The results in terms of the coefficient of heat transfer h and

shock detachment distance L are presented in figure 15. The definition
of the dimensionless heat-transfer coefficient is

h= q
i s
7 PJoo

A crossplot of the various calculations for the heat-transfer coefficient

at a given shock detachment distance is also presented in figure 16. It

is noted that in the lower right portion of each part of figure 16 where

Ta > 15,000 ° K (see fig. 6) the curves sho_n here have been extrapolated

by using the black body radiation limit as a guide.

From figure 16 several conclusions of practical interest may be

drawn. If attention is confined to the altitude range of severe heating

for shallow entry trajectories of manned vehicles (60 to 80 km), it is
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seen that, for entry velocities of about !i km/sec (corresponding to

entry upon return from the moon), neither decay nor absorption of radia-

tion would be important for L of i foot or less. At higher entry

velocities of about 15 km/sec (corresponding to entry upon return from a

short-time trajectory from Mars), decay of radiation would be important

but absorption would not. For objects such as large meteorites, however,

which enter at higher entry velocities and also at relatively steep angles,

the most severe heating occurs at altitudes of about 20 to 40 km, where

both decay and absorption are major factors in determining the radiative

heat flux to the body.

In regard to the limitations of the present calculations and to

their possible extensions the following observations are made:

(i) The calculations become questionable at very high velocities

where the gas cap temperature is so high that intense ultraviolet radia-

tion emitted upstream through the shock wave is absorbed by the oncoming

air. Under such conditions the absorption and re-emission upstream of

the shock wave would modify the results.

(2) The assumption of local aerothermal equilibrium behind the

shock wave is valid at the relatively high pressures and temperatures

where absorption is important, but it would not be valid at lower

densities where nonequilibrium phenomena have been demonstrated to be

important (see ref. 18).

(3) At temperatures other than those considered herein the transport

of heat by thermal conduction may be important. The results discussed in

appendix B show s however s that for the range of variables considered

herein, thermal conduction is small compared to radiation heat transfer.

(4) The accuracy of the gray gas approximation for air has not yet
been evaluated.

CONCLUDING REMARKS

Within the framework of the assumptions made_ it is found that

rather simple calculations of both the radiative heat flux do_nstream to

the wall s and of the radiative heat flux upstream from the gas behind a

normal shock wave_ provide a satisfactory solution to the problem of a

nonisothermal s absorbing s emitting gas. It is noted that at very high

velocities and large shock detachment distances, the calculated radiative

heat flux_ compared to that of the isothermal approximation_ is much

lower when decay and/or absorption are considered. In general, the char-

acteristic length provides a good guide to the appropriate radiative

regime (isothermal s decay, or absorption) in which a given entry vehicle
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operates. For manned vehicles entering along shallow trajectories at

t_ice the satellite velocity, for example, the effect of decay can be

significant, and for a large meteorite, or instrument-returm vehicle,

entering along a steep trajectory, the effect of absorption can also

be significant.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field_ Calif., May 21, 1962
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APPF_DIX A

METHOD OF SOLUTION

EVALUATION OF _ IN TERMS OF THE FUNCTION Fl

One of the equations to be solved for the radiative flux is

(15)

From aerothermodynacmic charts, such as presented in references 12,

14, or 15, equation (15a), the left hand side of equation (15), can be

evaluated for a constm_t pressure process.

_h h2 _T T2
Fl(P2, h2; h) m p_V_ d[h = p_V_ Cp dT (15a)

The enthalpy at constant pressure as deduced from reference 15 is plotted

in figure 2 as a function of temperature. The variations in temperature

with FI are shown in figure 3. These _ere o%tained from the enthalpy

cuawes in figure 2 by approximating them by a third degree polynomial of

temperature over intervals of i000 ° K.

From figure 3 T4/T24 = _ can be readily expressed in terms of F I.

N

_= ___' anFl n

I%=0

(A1)

For the present _¢ork, N : 3 represents a sufficiently accurate approxi-
mat ion

_4 : ao + amF l + a2Fl 2 + asF1 s

where an will be denoted as

ao : 1

a I = a -

a_ = b

dT4_FI=o_ 8cT23
dFl P_V_cp2

(A2)

a$ = c
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Let Fl _ F2 as given in equation (15), and F2 from equation (21) as

F2 = d[l - e -_aTw - e -_IT + e-q2(Tw-T) ], then (A2) becomes

-ZT -q2Tw -mT -2_2T w -nT -qzT -_2(TV-T)_ = A - Boe-_2TWe + Ble e Bxe e - Be + Be

+ Ce -2qIT -2q2(Tw-T) -SqlT -3q2(Tw-T)+ Ce - De + De (A3)

where

: ql - qa

m = 2ql - q2

n -- ql - 2q2

A = i + adf + bd2f 2 + cdSf 3

B o = 2bd a + 6cdSf

B l = 3cd s

B = ad + 2bdaf + 3cdSf 2

C = bd a + 3cdSf

D = cd 3

f = 1 - e -q2Tw

(A4)

>

For _i = _2 = 2 the following relations are used in equation (A3)

A - B o as A and B - Bl as B (A6)

Equations (A3) to (A6) provide the evaluation of function y4.

In evaluating the radiative fluxes from equations (13a), (13b),

and (13c), and the derivatives of the flux from equations (llc) and (lid)

with equation (A3); many terms involving the integral of a product of

an exponential and an exponential integral function are encountered.

Such integrals have been evaluated from references 19 and 20.
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EVALUATION OF INTEGRALS INVOLVING E2(_') AND El(T)

_o_'_ _o'r_ --_(-r_,-T)_,__( - _-)_'r

_2 [_,i(_) - _,2(T_) ]

+ _(n + l) - n - E_(n + l)Tw} (ATa)

T_ _n(Tw__)E2(T ) _o_W -nT
e _T = e E2(T_ - T)_T

_l2 j_(Tw) + ,IE2(T) +-:LeTITW

[-_n(_ - i) - _ + Ei(_ - i)_]} (ATo)

So _ ! - _(_)Tw E2(T)aT= E2(Tw - T)a_ = 2 (A7c)

= i [_n(1 + I]) +EI(I + _)Tw - e-_TWEI(Tw)] (ASa)

_oTw -n( _o Tw -_T
e TW-T)El(T)dT = e El(TW - T)dT

= 1 [_e_TW_n(_ _ i) + e-hTWEi(h - I)TW + Em(Tw)]

(A_)
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Tw _(T)dT -- _,_(Tw- T)dT : i - E2(_w)

The following relations are used:

if _<i

if 9 : i

-Zn( 9 - i) + El( 9 - 1)T w = -Zn(l - 9) - El(1 - 9) TW

-Zn(_ - l) + El(_ - m)Tw : 7 + In Tw

(ASc)

where 7 : Eulers constant (=0.57722).

For simplicity of calculations numerical values associated with

equations (A7a) to (A8c) have been prepared for 9 from 0.i to 9.0

with 0.i intervals.

FORMULATION OF F AND F' FUNCTION

Equations (13a), (b), and (c) upon the introduction of equation (A3)

and the integrals evaluated in the previous section become the following:

By employing the following symbolic notation for the integral evaluated

in equations (A7a) to (A7c)

then

(ATa) _ (1) e.g., 9 :

(A7c) e (Ill) 9 = 291

in (A7a) _ (I) Z

in (i7a) -: (I) al

in (ATb) -= (II)_

8
in (A7a) -=(1)2 etc.

Fs : A(III)- Bo(I)z + Bl[(I)m- (I)n]-B[(I)al - (II)_]

+ c[(1)[+ (I_)[]- D[(1)_l- (iI)_] (A9)

Fw = A(III) -Bo(II) z - Bl[(II)n - (II)m] + B[(I)_ - (II)_]

2
+ C[(I) a + (II)_] + D[(I)as - (II)_] (AIO)
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Ft = Fs + Fw

: 2A(III) - Bo[(I) Z + (II)_] + B!{(I)m + (II)m- [(I)n + (II)n]_

+ C[(I)_ + (II)_ + (I)_ + (II)_] - B{(I)_ +(II)_-[(I)_+(II)_] 1

- D{(i)_ + (II) s - [(1) s + (II)Sp]} (All)

Also; equations (llc) and (d) with the symbolic notation

(ASa) - [ I]

(ASh)= [Ill

(ASc)- [KI]

become

F s' = Z - [III] - Bo[l]% + Bl{[Z]m - [I]n} - B{[I]I -

+ C{[I] "°l+ [II]_} - D{[I] s_ - [ll]aS}_ (AI2)

<A . 1 [II]_}Fw' = 2_e _ - [IZI] - Bo[II]z - B1{[II]n - [II]m}+B{[I]a -

+ C{[I] 2a + [If]I} + D{[I]_ s - [II]S}p
(Al3)

For the first approximation (91 = 9m : 2) Fs; Fw_ amd Ft with condi-

tion (A6) become

F s = A(III) - B[(I)_ - (II)_] + C[(I)_ + (II)_] - D[(I) Sl - (II) s] (AI4)

Fw = A(III) + B[(I)_ - (II)_] + C[(I)[ + (II)_] + D[(I) s - (II) s] (A15)

Ft = 2A(III) + 2C[ (I)_ + (II) all (AI6)

Also; Fs' and Fw' can be written

F s' = 2 - <A[III] - B{[I]_ - [II]_'} + C{[I]_ + [II]_l

- D [ i_9 - [ K]_}) (A17)
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Fw' = _e z_ - _A[Iil] + BI[I] _ - [II]_ + CI[I] _ + [II]_

(A18)

By definition

F2s' = Fs' (AI9)

Faw' =-_--iFw' (A20)
_e _

F2 Function for First Approximation

As a first approximation, _(T_ t) ~ 0 and Fm are readily evaluated

in terms of exponential integral functions

1 E_(T_) - E_(_) * E3(Tw - _) (18)_2(T_, T) = _ -

Ho_¢ever, due to difficulties associated with evaluation of expressions_

_o T_
suchas _n(T_¢ - _)_(_)dT, the e_ction _(_) is f_ther _pproxi-

mated by the simple exponential function e /2 which, at T = O_ has

the same value as E3(O), and the same derivative as E3'(O); to compensate

for thisapproximation,a no_alizi_gfactor1 - 2_3(T_)/2(1-e-_T_)is
applied in order that F2(Tw_ Tw) reduce to the proper value of

i - 2E3(_w). The result for the first approximation is

r2(_,¢,T) ~_i- _3(%_) [1- _ - e + e ] (19)
_(1 - e-a_O

Modification Factor G(_¢) in Second Approximation

The method of determining the mean value of Fw' _ mentioned earlier

in the outline of solution, is described in this section. The second

derivative of F(Tw, T) can be derived from equation (llb) as

4-
Uo _Eo(_ - t)dt - _Tw _4Eo(t _ T)dt

(A21)
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Then

F
s _ - OoT=O

_4E o (t) dt (A22a)

= _e 3 _ F T_Fw
" _7 T=TW + UO _Eo(T w - t) dt

(A2_)

From the above equations it is apparent that F" at both boundaries is

infinite, and these singularities (especially at m = Tw) create an

infinite gradient of temperature, even though the change in T is very

small] equation (21b) remains finite at both ends. To compensate for

this effect, a modification factor G is introduced to adjust Fw' by

the relationship

r-_,: o(Tw)rw' (A23)

The value of F' at 7 = 0.957w is found to be a good average value to

use instead of the actual value at the end. It can be obtained approxi-

mately as follows:

From equation (llb)

r'(Tw, 7) = z-_ - _o Tw

or

_4EIIT- tldt ~ _4<2- _o 7w

F'(7_, 7) ~'T_[E2(7) + E2(7 w - 7)]

then

G(7 w) _ F'(Tw, 0.957w)

Fw'
= _4(0"957w)[Ea(O'957w) + Ea(O'O97w) ] (A24)

Ye_[E2(Tw) + i]

where T(O.957w) and Te are found from the first approximation; and

G(mw) is limited by the inequality

o(Tw)_>i/2

To maintain some slope at the end, for example Tw at _, the mean value

of G(_) = 1/2 is used instead of G(_) = O. It was noted that the

slope around m = 0 was smooth enough that no significant correction was

required.
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PROCEDURE FOR DETERMINING SECOND APPROXIMATION

The second approximation is obtained as follows:

Equations (AI6), (AI2)_ and (AI3), with the use of the first approximation

(eq. (19)), yield the following quantities:

Ft _ F2w = F2(Tw3 TW) from figure 4

I !

F s _" Fas (A25a)

Fw' _ F2w' _ Fmw' equations (A23) and (A24)

Equations (21), (2ia), and (21b) are then matched with the above condi-

tions in (A25 a) to determine the constants d_ _I, and _a- The following

outline illustrates the calculation procedure:

(a) Assume d =
i-

2(i- e -gITw)
as given at equation (19), and _l = 2

(b) Calculate Ba from equation (21b) as

Faw' -_iTw -qaTw -qa_W
_a = d qle , and find e and q2e (A25b)

(c) Calculate _l from equation (21a) as

Fa s' -_aTw -_ITW -q iTw

_l = d T]ae _ and also e and qle

(d) Repeat (b) and (c) until Bl and _2

figure s

(e) Then compute a new d from

(A25c)

converge to two significant

d : (A25d)
(2 - e-_ITw - e -_2Tw)

and repeat procedures (b) and (c) until d, BZ, and _2 converge.

A set of constants in (AS)

above_ and new values of

and (AI3).

are then computed from d_ _l, and Da obtained
Ft, Fs'_ and Fw' are obtained from (All), AI2),
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The entire above procedure is repeated until d, _l, and Ha coincide with

the previous iteration. It was found that Fs' and Fw' obtained from

the first approximation always gave sufficient convergence so that no

further iteration upon these values was necessary. Also, it was found

that the precise accuracy of these quantities was not so significant

compared with that of Ft .

When HI and Ha are stable or given, d can be estimated from (A_) in

the following way: Let

e' : h__dd<< i
d

Then differentiation of (A5) with respect to d_

~ (adf + _d2f2 + 3cd3f3)c'_

AB o ~ (4bd a + 18cdSf)e'

_i ~ (9cd3)c'

fib ~ (ad + 4bdaf + 9cdSfa)e ' [

JAC ~ (2bd 2 + 9cdSf) e'

SD ~ (3cdS) m'

(A25e)

These values are substituted into equation (All) for an arbitrary

value of d near the original value, and corresponding values of Ft

are plotted against Fa (=Fl) in figure 4. Intersection of the plotted

curve with the original curve is the point where d is determined

from Fa.

EVALUATION OF RADIATIVE FLUXES FOR SPECIAL CASES

For the case of either a small or a large optical thickness_ the

calculation of the radiative flux by the first approximation becomes

rather simple.

Tw << i

By use of approximation

1 T (A26a)



27

equation (18) becomes

F2(T_, T)

and it follows after

2

Fl = F2

2T (A26b)

= 1 + a_F 1 + s2F1 _ + asF_ s + . . .

i + 2azT + . . • (A26c)

then fluxes at both ends are

_o T_F_ = r_ = j__ Y_,_(_)_ = T_,_(T_ _)d_

2

=T w (A26d)

This result clearly is the appropriate one for the case of either the

isothermal or the decay approximation.

Tw >> i

In evaluation of the flux at the shock Fs, terms -Es(TW) + ES(T w - T)

can be dropped from the function F2 since crossproducts of these terms

with exponential integral Ea(T) become negligible for Tw >> i. Thus;
it follows after definition of F*

that

r*(_)= k - _s(T) (A27a)
2

_o F*(Tw) (i + axF* + aaF*2 + asF*S +F s = . . .)dF*

= F(TW ) + a.__1F.2(Tw ) + a_a_2F.s(irw) + __ F.4(m_ ) + . . .2 3

As %(T_) -_ o

rs _-_+ al +_ a2 + as + • • •

(A27b)

(A27c)
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Similarly the term -E3(T w) + E3(T ) can be dropped from F2 for

the flux at the wall Fw_ and after definition of F. it follows

i
F.(_) = _ + E_(Tw _) (A27d)

Fw = (i + a iF. + a2F. a + a3F. _ + . .)dF.
(0)

al a2 a8
= i - F.(o)+7-I1 - F._(o)]+7-I1 - F._(o)]+-V [i - F._(O)]+...

(A27e)

Asymptotically

Fw = _ + _ al + __ a2 + i__ as + . . . (A27f)
2 8 24 64

Then the total radiative flux Ft becomes

Ft = F s +F w

1 1 1

= i +_ a I + _ a2 + _ as + . . . (A27g)

Fluxes calculated by both equations (A27b) and (A27e) provide a good and

quick estimate of an optically thick case for _4 > i/2. Furthermore;

it is noted that the expansion of equations (A2To) and (A27e) in terms

of equation (A26a) produced an identical'result as equation (A26d), which

is for the optically thin case. Thus; it is suggested that the above

equations may well be applicable for all Tw within the limitation

of Y_ > 1/2.
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APPENDIX B

MAGNITUDE OF CONDUCTION HEAT RELATIVE TO RADIANT HEAT

The magnitude of the conduction heat transfer in equation (lOa) can

be estimated from equation (llc)_ with the thermal conductivity of air

obtained from reference 21_ as follows:

but

_T dT dFa _F dT

dT Fa =o _ -2_T2 s dFa F=o _F T=O dTdF--7 p_V_cp; _-- = l; _ = %'; _ = _

hence

_T-(__o =-___o__ __ _, (BI)

Let
k_S

r -: _x (B2)
2¢T2_Ft

Then from equation (BI)

f_ kaCa Fs' (B3)

P_V_cp2 Ft

For Tw>> i

Fs I ~ 1

Ft - i

It is found from reference 21 that

For mw << i

r k2_2 << i for

PooV_cp 2

F s' - 2

Tm < 15,000 ° K (m)

Ft ~ 2Tw
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or

r k2
D_V_cpaL

The above parameter can be large for sufficiently small values of

shock detachment distance L where thermal conduction begins to be

important. This boundary could be considered along with the boundaries

already shown in figure i0. However, L_ in most practical cases, will
not be less than 10 -2 cm. For such conditions the contribution of heat

conduction to the energy equation is negligible since f << i. (It is

noted that these calculations do not consider the boundary layer where
viscous effects are large.)

For example:

Tm < !5,000 ° K Pa = i_000 atm F <_ i for L >> 10 -5 cm

= i00 i0

= i0 10 -3

: i lO -2



31

REFERENCES

•

o

•

.

•

.

•

.

.

i0.

ii°

12.

Kivel, B.: Radiation From Hot Air and Stagnation Heating. Research

Rep. 79, AVC0 Res. Lab., Oct. 1959.

Goulard, R.: The Coupling of Radiation and Convection in Detached

Shock Layers. Bendix Product Div., Applied Sciences Lab._

April 1959.

Yoshikawa_ Kenneth K., and Wick, Bradford H.: Radiative Heat

Transfer During Atmosphere Entry at Parabolic Velocity. NASA

TN D-I074, 1961.

Alien, H. Julian: Problems in Atmospheric Entry From Parabolic

Orbits. Jour. of Japan S,c. for Aero. and Space Sci., vol. 9,

no. 89, Feb. 1961, pp. 43-90.

Allen_ H. Julian: On the Motion and Ablation of Meteoric Bodies.

Aero. and Astro; Proc. Durand Centennial Conf., ed. by N. J. Hoff

and W. G. Vincenti, Pergamon Press_ N. Y., 1960, pp. 378-416.

Chapman, Dean R.: An Approximate Analytical Method for Studying

Entry Into Planetary Atmospheres. NASA TR R-If, 1959.

Viskanta_ R.: Heat Transfer in Thermal Radiation Absorbing and

Scattering Media• A}_L-6170, Argonne National Lab., May 1960.

Pomerantz, Jacob: The Influence of the Absorption of Radiation in
Shock Tube Phenomena. NAVORD Rep. 6136, Aug 15, 1955.

Goulard, R._ and Goulard, M.: One Dimensional Energy Trapsfer in
Radiant Media. Int'l Jour. Heat Mass Transfer_ vol. i, 1960,

pp. 81-91.

Chandrasekhar_ S.: Radiative Transfer. Clarendon Press, Oxford, 1950.

Kourganoff_ V.: Basic Methods in Transfer Problems. Clarendon Press,

Oxford, 1952.

Hochstim, A. R.: Gas Properties Behind Shocks at Hypersonic Veloci-

ties. Pt. I - Normal Shocks in Air. Convair ZPh(GP) 002,

Jan. 30, 1957.

Hochstim_ A. R.: Gas Properties Behind Shocks at Hypersonic Veloci-
ties. Pt. II - Introduction to General Th%rmodynamics of a Real

Gas. Convair ZPh 003_ May 19_ 1957.

Hochstim, A. R., and Arave_ Russell J.: Gas Properties Behind Shocks

at Hypersonic Velocities. Pt. ili - Various Thermodynamical
Properties of Air. Convair ZPh 004_ June 14, 19Yl.



32

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ziemer, R.W.: Extended Hypervelocity Gas Dynamic Charts for

Equilibrium Air. TR-60-0000-09093, Space Technology Lab., Inc.,

April 14, 1960.

Fenter, F.W.: The Thermodynamic Properties of High Temperature

Air. Rep. RE-IR-!4_ Chance Vought Research Center, June 28, 1961.

Moeckelp W. E., and Weston, K. C.: Composition and Thermodynamic

Properties of Air in Chemical Equilibrium. NASA TN 4265, 1958.

Kivel_ B., and Bailey, K.: Tables of Radiation From High Temperature

Air. Rep. 21, AVC0 Res. Lab., Dec. 1957.

Meyerott, R. E., Sokoloff; J._ and Nicholls, R.W.: Absorption

Coefficients of Air. LMSD 288052, Lockheed Aircraft Corp._

July 1960.

Camm, J. C., Kivel, B., Taylor_ R. L._ and Teare, J. D.: Absolute

Intensity of Non-equilibrium Radiation in Air and Stagnation

Heating at High Altitude. Res. Rep. 93; AVCO Reso Lab., Dec. 1959.

Placzek, G.: The Functions En(x ) = _ e-XUu-ndu. Rep. MT i,

Nat'l Res. Council of Canada. Div. of Atomic Energy, Dec. 2_ 1946.

LeCaine_ J.: A Table of Integrals Involving the Functions

En(x) - _ e-XUu-ndu. Rep. MT 131, Nat'l Res. Council of Canada,

1960.

Hansen_ C. F.: Approximations for the Thermodynamic and Transport

Properties of High-Temperature Air. NACA TN 4150_ 1958.



33

_

P=
:Tw< < T e"

L or "t'w =-_

Figure i.- Schematic diagram of radiation region behind normal shock wave.
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